Environmental Protection Agency oxygen, except that all 12-hour average TRS concentration from a recovery furnace shall be corrected to 8 volume percent using the following equation: $C_{\text{corr}} = C_{\text{meas}} \times (21 - X/21 - Y)$ where: $C_{ m corr}$ =the concentration corrected for oxygen. $C_{ m meas}$ =the concentration uncorrected for oxygen. X=the volumetric oxygen concentration in percentage to be corrected to (8 percent for recovery furnaces and 10 percent for lime kilns, incinerators, or other devices). *Y*=the measured 12-hour average volumetric oxygen concentration. - (4) Record once per shift measurements obtained from the continuous monitoring devices installed under paragraph (b)(2) of this section. - (d) For the purpose of reports required under §60.7(c), any owner or operator subject to the provisions of this subpart shall report semiannually periods of excess emissions as follows: - (1) For emissions from any recovery furnace periods of excess emissions are: - (i) All 12-hour averages of TRS concentrations above 5 ppm by volume for straight kraft recovery furnaces and above 25 ppm by volume for cross recovery furnaces. - (ii) All 6-minute average opacities that exceed 35 percent. - (2) For emissions from any lime kiln, periods of excess emissions are all 12-hour average TRS concentration above 8 ppm by volume. - (3) For emissions from any digester system, brown stock washer system, multiple-effect evaporator system, or condensate stripper system periods of excess emissions are: - (i) All 12-hour average TRS concentrations above 5 ppm by volume unless the provisions of §60.283(a)(1) (i), (ii), or (iv) apply; or - (ii) All periods in excess of 5 minutes and their duration during which the combustion temperature at the point of incineration is less than 1200 °F, where the provisions of §60.283(a)(1)(iii) apply. - (e) The Administrator will not consider periods of excess emissions reported under paragraph (d) of this section to be indicative of a violation of §60.11(d) provided that: - (1) The percent of the total number of possible contiguous periods of excess emissions in a quarter (excluding periods of startup, shutdown, or malfunction and periods when the facility is not operating) during which excess emissions occur does not exceed: - (i) One percent for TRS emissions from recovery furnaces. - (ii) Six percent for average opacities from recovery furnaces. - (2) The Administrator determines that the affected facility, including air pollution control equipment, is maintained and operated in a manner which is consistent with good air pollution control practice for minimizing emissions during periods of excess emissions. [43 FR 7572, Feb. 23, 1978, as amended at 51 FR 18545, May 20, 1986] #### § 60.285 Test methods and procedures. - (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures in this section, except as provided in §60.8(b). Acceptable alternative methods and procedures are given in paragraph (f) of this section. - (b) The owner or operator shall determine compliance with the particulate matter standards in §60.282(a) (1) and (3) as follows: - (1) Method 5 shall be used to determine the particulate matter concentration. The sampling time and sample volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf). Water shall be used as the cleanup solvent instead of acetone in the sample recovery procedure. The particulate concentration shall be corrected to the appropriate oxygen concentration according to §60.284(c)(3). - (2) The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the oxygen concentration. The gas sample shall be taken at the same time and at the same traverse points as the particulate sample. - (3) Method 9 and the procedures in §60.11 shall be used to determine opacity. - (c) The owner or operator shall determine compliance with the particular #### § 60.290 matter standard in $\S60.282(a)(2)$ as follows: (1) The emission rate (E) of particulate matter shall be computed for each run using the following equation: $E{=}c_s\,Q_{sd}\!/BLS$ where: E=emission rate of particulate matter, g/kg (lb/ton) of BLS. c_s =concentration -- of -- particulate -- matter, g/dsm (lb/dscf). $Q_{sd} = volumetric flow rate of effluent gas, dscm/hr (dscf/hr).$ BLS=black liquor solids (dry weight) feed rate, kg/hr (ton/hr). - (2) Method 5 shall be used to determine the particulate matter concentration (c_s) and the volumetric flow rate (Q_{sd}) of the effluent gas. The sampling time and sample volume shall be at least 60 minutes and 0.90 dscm (31.8 dscf). Water shall be used instead of acetone in the sample recovery. - (3) Process data shall be used to determine the black liquor solids (BLS) feed rate on a dry weight basis. - (d) The owner or operator shall determine compliance with the TRS standards in §60.283, except §60.283(a)(1)(vi) and (4), as follows: - (1) Method 16 shall be used to determine the TRS concentration. The TRS concentration shall be corrected to the appropriate oxygen concentration using the procedure in §60.284(c)(3). The sampling time shall be at least 3 hours, but no longer than 6 hours. - (2) The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the oxygen concentration. The sample shall be taken over the same time period as the TRS samples. - (3) When determining whether a furnace is a straight kraft recovery furnace or a cross recovery furnace, TAPPI Method T.624 (incorporated by reference—see $\S 60.17$) shall be used to determine sodium sulfide, sodium hydroxide, and sodium carbonate. These determinations shall be made 3 times daily from the green liquor, and the daily average values shall be converted to sodium oxide (Na₂0) and substituted into the following equation to determine the green liquor sulfidity: GLS = 100 $C_{\rm Na2S}/(C_{\rm NA2S} + C_{\rm Na2H} + C_{\rm Na2CO3}$) Where: $GLS = green\ liquor\ sulfidity,\ percent.$ C_{Na2S} =concentration of Na_2S as Na_2O , mg/liter (gr/gal). $C_{\rm NaOH}{=}{\rm concentration}$ of NaOH as Na₂O, mg/ liter (gr/gal). C_{Na2CO3}=concentration of Na₂CO₃ as Na₂O, mg/ liter (gr/gal). - (e) The owner or operator shall determine compliance with the TRS standards in \$60.283(a)(1)(vi) and (4) as follows: - (1) The emission rate (E) of TRS shall be computed for each run using the following equation: $E=C_{TRS} F Q_{sd}/P$ where: E=emission rate of TRS, g/kg (lb/ton) of BLS or ADP. C_{TRS} =average combined concentration of TRS, ppm. F=conversion factor, 0.001417 g H_2S/m^3 ppm (0.08844×10⁻⁶ lb H_2S/ft^3 ppm). Q_{sd} =volumetric flow rate of stack gas, dscm/hr (dscf/hr). P=black liquor solids feed or pulp production rate, kg/hr (ton/hr). - (2) Method 16 shall be used to determine the TRS concentration (C_{TRS}). - (3) Method 2 shall be used to determine the volumetric flow rate (Q_{sd}) of the effluent gas. - (4) Process data shall be used to determine the black liquor feed rate or the pulp production rate (P). - (f) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this section: - (1) For Method 5, Method 17 may be used if a constant value of 0.009 g/dscm (0.004 gr/dscf) is added to the results of Method 17 and the stack temperature is no greater than 205 $^{\circ}$ C (400 $^{\circ}$ F). - (2) For Method 16, Method 16A or 16B may be used if the sampling time is 60 minutes. [54 FR 6673, Feb. 14, 1989; 54 FR 21344, May 17, 1989, as amended at 55 FR 5212, Feb. 14, 1990] ## Subpart CC—Standards of Performance for Glass Manufacturing Plants # § 60.290 Applicability and designation of affected facility. (a) Each glass melting furnace is an affected facility to which the provisions of this subpart apply.